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Abstract

In fields like epidemiology and biological sciences, logistic regression is essential for
predicting or categorizing binary outcomes. However, multicollinearity, where predictor
variables are highly correlated, can impact the model and lead to erroneous conclusions
about each predictor’s effect. While maximum likelihood estimation is commonly used
to obtain model parameters, it can be problematic with small sample sizes. There is
littleresearch on how sample size affects multicollinearity in high-dimensional binary
logistic regression. To address this, researchers often suggest using methods like variable
droppingor principal component analysis. This study aimed to evaluate the feasibility of
using PCA to manage multicollinearity in logistic regression with large column vectors
and examine how sample size affects multicollinearity with samples of size 100, 200,
500, 1000, 1500 and 2000. Results indicate that standard errors (SEs) and Variance
Inflation Factors (VIFs) decrease with larger sample sizes and increase as sample sizes
decrease, even with no correlation between predictors. Suggesting that sample size plays
a crucial role in multicollinearity. The study recommends a sample size of at least
500 to avoid issues with multicollinearity in logistic regression. If obtaining a sample of
this size is not possible, using Principal Component Analysis (PCA) is a useful
alternative.

Keywords: logistic regression, multicollinearity, high dimensional data, principal component
analysis

1.0 INTRODUCTION

In contrast to linear regression, which is utilized for forecasting continuous results, logistic
regression aims to classify or forecast discrete or categorical outcomes, for instance, the
possi- bility that a patient will succeed in cognitive rehabilitation (Maroof, 2012). This is
particularly important in epidemiology and biological sciences, where it is necessary to
predict or categorize a binary outcome or the likelihood of an event happening. Logistic
regression is utilized to evaluate the probability of factors, such as high blood pressure, age,
and cholesterol, influenc- ing the possibility of suffering from heart disease. However, the
logistic regression model can sometimes be impacted by multicollinearity, which violates
its underlying assumptions.
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A scenario known as multicollinearity occurs when there is a stronger correlation between
two or more explanatory variables in the model (Aidoo et al., 2021). Multicollinearity,
however, has the potential to bias or skew the estimated model parameter as well as increase
the estimated standard errors related to the model parameter estimates (Lavery et al., 2019;
Zahid & Ramzan, 2012; Sinan & Alkan, 2015). Multicollinearity allegedly undermines the
statistical significance of independent variables, which makes it difficult to understand
model parameters (Mackinnon & Puterman, 1989; Allen, 1997). Multicollinearity does
not influence the model’s goodness of fit, but it does lead to the incorrect conclusion when
the goal is to forecast the effect of each predictor variable. This has an impact on how
coefficients of predictor variables should be interpreted as a measure of how much the
outcome variable will change with a unit change in the predictor while holding other
variables constant. Due to the current limitation, the overlapping of variables can lead
to an unrealistic contribution from each explanatory variable. The maximum likelihood
estimation approach is typically used to obtain the parameters of the logistic model.
When a large sample size is involved, the maximum likelihood estimators are known to
be objective and consistent (Murphy, Rossini, & van der Vaart, 1997). Small samples are,
however, frequently used in the medical sciences.

The effect of sample size on multicollinearity has been the subject of numerous studies,
but little is known about binary logistic regression, particularly when dealing with high
dimensional column vectors. Because of this, it might be difficult to determine at what
sample size a researcher should be concerned about the problem of multicollinearity.

Numerous solutions to multicollinearity problems have been suggested by experts over
the years (Aidoo et al., 2021). The drop variable approach, which entails deleting highly
correlated variables from the model, is one of the most popular and basic methods for
handling multicollinearity issues (Chen, 2012). Principal component analysis (PCA),
which identifies orthogonal directions of maximum variance in the original data set and
projects it onto a low dimensional subspace composed of the highest variance components
without losing much information, is another method for dealing with the multicollinearity

problem.

1.1 Study Objectives

The aim of the study is to investigate how sample size affects multicollinearity when
performing logistic regression analysis. In addition, the study aims to ascertain the
feasibility of PCA in handling multicollinearity problems in logistic regression and the
extent to which the method can yield estimates with less variance Inflation Factor (VIF).

2.0 METHODS AND MATERIALS

2.1 The Logistic Regression Model

For the analysis of data with categorical dependent variables, the multivariate statistical
tool known as logistic regression (LR) is frequently utilized. It is among the top resources
for creating and applying binary linear models for classification.
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To use the logistic regression model on the data, certain assumptions must be made, aswith
any other method. Contrary to presuming a linear relationship between the predictor
and outcome variables, logistic regression assumes a relationship between the logit of the
independent and dependent values. Additionally, the outcome variable needs to be
categorical, andits categories must be both mutually exclusive and exhaustive as well
(Hosmer, Lemeshow, & Sturdivant, 1989).

Letx, X, X,, X,, X Let us denote a collection of continuous predictor variables without any
error. We will now consider n observations of these variables, which will be represented in
the matrix format; x = (x,.j)nxp.

let Y= (y, ¥, ¥y ¥y -p,) bearandom sample outcome variable Y associated with the
observations in x that is, y. € {0,1} i = 1,2, 3,4, ..n. Then the LR model is given by;

Yy, =T, +E€, i=12,34,..p @))
Where:
y, is the outcome
e is the error term

n represents the expected value of Y given X = x1, ..., xp, and it is expressed in the model as
follows:
eﬁo+51X1+...+ﬁpo

ni = P{Y = 1xi1,...,Xip}=
{ | b} L+ ePoHBiX1+-+BpXp

(2)

Where: $, 8,6, B, B, - P, are the model parameters.

Since the above logistic model is non-linear, the logit transformation would be employed to
make it linear. This is given by:

n [11’;3? )] BD + lel + ot Bn Xn (3)

The linear summation can be obtained from the logit of p(x). The ratio of p(x) divided by
1-p(x), whose log value yields the logit, expresses the likelihood that a COVID-19 patient
would pass away, with x denoting the predictor variables.

2.2 Techniques for Detecting Multicollinearity

2.2.1 Tolerance

In order to identify the presence of multicollinearity, one may employ the utilization
of tolerance, which measures the proportion of the variation in a specific independent
variable that remains unaccounted for by the remaining independent variables. The specific
explanatory variables which have a certain level of tolerance is given by:

Tolerance = 1 — R? 4)

If the tolerance value approaches 1, it suggests minimal multicollinearity, whereas if it
approaches 0, there is a greater chance of multicollinearity.
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2.2.2 VIF

The Variance Inflation Factor (VIF) is an indicator that reveals the degree by which
multicollinearity inflates the estimated coefficient’s variance. A Variance Inflation Factor
value which is > 5 indicates the presence of multicollinearity (Shrestha, 2020). A VIF value
is given by;

VIF, = —

1-R} 5)

Where;

R? is the coefficient of determination for regressing the predictor variable on the rest of
the variables.

2.2.3 Correlation Coefficient

The Pearson correlation coeflicient (also known as the “correlation coefficient”) is a most
frequently employed indication of a linear relationship among two normally distributed
variables. The Pearson coeflicient is commonly calculated using a Least-Squares fit, with
a value of 1 denoting a perfect positive link, a value of -1 denoting a perfect negative link,
and a value of 0 indicating the lack of a relationship between variables. The usual rule is
that multicollinearity exists when the correlation between variables exceeds 0.7 or 0.9.

2.3 Principal Component Analysis

There is always the danger of multicollinearity when dealing with high-dimensional data.
Karl Pearson pioneered principal component analysis in the early 20th century, and Harold
Hotellingexpanded on it in 1933. It is a multivariate method used to describe the variability
of a set of variables in terms of a smaller number of uncorrelated linear spans, such as
variables with thehighest variance, known as principal components.

PCA produces a feature subspace that maximises variation along the axes, we must
first standardise the original data set (mean = 0, variance = 1). The main goal here is
to convertthe data set X of D dimensions into a new sample set Z of smaller dimension
P(P < D), hereZ is the PC of X.

The principal components can be obtained as follows:

1. Organize the data set. With X having a set of n vectors where X element
is an instanceof our data set.

2. Find the mean of variables using the equation;
— 1 n
X = T li=1 X; (6)
3. Calculate the variance;
§2=—

C— ]2
- n-—1 [x" x]

4. Calculate the covariance;
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S = [x; — fi][xj - fj] (7)

5. Calculate the eigenvalues and eigenvectors of the covariance matrix. Determine
the eigenvalues and eigenvectors of the covariance matrix. The eigenvectors
indicate the orientations of the new feature space, while the eigenvalues indicate
their respective magnitudes.

Let us say A is a d x d matrix then a non-zero x in RY is the eigenvector of A.
If Ax is also a scalar multiple of x that is: Ax = Ax for some scalar A. The scalar A
is termed as an eigenvalue of A and A is corresponded by x. Since the eigenvector
corresponding to the eigenvalue is non-zero of the matrix A, they satisfy the
equation:

(A —A)x=0 (8)

By using this definition, we can refer to the set E as encompassing all vectors x that fulfill
the equation stated below, representing the associated eigen space.

E{x:(A—ADx}=0 ©))
6. Once the eigen space is obtained from the covariance matrix, the next step is to
order the eigenvectors with regard to their eigenvalues from highest to lowest
A, =\, = A, =\, .., = A\ ). The proportion of total variation accounted for
by the i PC is given by:
Ai
Z:F=1’-{i)

i=12,..,n (10)

by doing so, we eliminate components that are less significant and retain PCs that
provide good approximations of the original data.

2.4 Statistical Software

The R software version R.4.1.3 was used for fitting the LR models at 0.05 significance
level andsimulation of data.

3.0 Simulation Setting

In the simulation, 1000 samples (replications) of sizes n= 100, 200, 500, 1000, 1500, and
2000 were generated based on model (2) with 20 covariates. In order to study the effect of
sample size on multicollinearity, two different logit models were created during the data
generation stage. These two models were simulated in two different ways as:

3.1 Version 1

1. Generate 20 independent normal predictor variables X, X, X, X, X, X, X,
Xy Xy X, peenrs X, from a multivariate normal distribution with mean vector
u =1(0,0,00000,00,0,...... , 0) and covariance matrix:
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“10 0 i
o 0 -
2=_00 1 0
o i
00 0 1
2. Use the information in 1 to generate an outcome variable y using the logit
function:
eSD+61X1+32X2+33X3+54X4+...+5po
H = 1 + eBo+81X1+82X2+83X3+84Xa+...+6pX, (11)

with model parameters B¢, 81, 82, 83, 84, ...6,

3. Generate the observed response variable y such that:

_{o ifu <05
“Wifu =05 (12)

4. Fit a binary logistic model y ~ 0.2 +0.12X, + 0.4X, + 0.3X, + 0.03X, +
0.6X5 + 0.43X6 +0.4X7 + 2.1X8 + 0.72X9 + 4.3X10 + 1-9X11 + 0.6X12 +
0.8X13 +0.7X14 +0.7X15 +0.8X16 +0.2X17 + 0.6X18 + 0.9X19 + 0.11X20

5. Perform the steps numbered 1 to 4 in a repetitive manner, iterating 1000
times for various samples, and determine the suitable parameters through
computation.

3.2 Version 2

1. To address the issue of high multicollinearity in a large data set X containing
100 observations and 20 variables, principal component analysis was utilized.
The data was sourced from a multivariate normal distribution with a mean of
zero and a variance of one for comparative analysis.

2. High correlation is fixed at 0.80 to induce problem with multicollinearity
deliberately.

3. All other procedures remain the same as outlined in the first simulation setting.

4.0 Results and Discussion

Table 1: VIF and standard errors for binary logistic model variables with 20 predictor
variables.
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WIF Standard Error

Sample Size

Variable 100 200 500 1000 1500 2000 100 200 500 1000 1500 2000

X1 838.4100 7.0500 110659 1.0658 1.0501 1.0350 165272 1.3400 0.1%00 0.1300 0.1000 0.0500
Xz 289500  12.0300 13300 10770 10747 10760 41688 1.6700 ©0.2000 0.1300 0.1100 0.0%00
Xz 462.0760 27.6700 12310 1.0407 10808 1.0490 129370 08500 0.2100 01200 0.1100 0.1000
Xa 228200 5.7400 11025 1.0590 1.0271 1.0207 335590 1.0500 ©0.2000 0.1200 0O.1000 0.0500
X5 703200 6.2300 11538 1.2%40 1.2308 1.1492 950231 1.3100 0.2300 0.1400 0.1100 0.0500
Xs 4523700  6.3600 11340 11206 10663 1.0481 55230 1.2800 0.1%00 0.1300 0.1000 0.0500
X7 21.1300 5.3100 12760 1.2310 1.1120 1.0767 25603 1.0500 ©0.2300 0.1400 0.1000 0.0B00
X& 2211800 B1.8000 25350 22325 2.3980 23627 71347 43500 0.3400 0.2000 0.1700 0.1400
Xao 83.3900  25.0700 17092 13431 1.1781 1.3788 58375 3.0100 0.2400 0.1400 0O.1100 0.1000
X 337600 1793000 6.398%9 36355 44115 35090 52845 24200 06100 03400 0.2500 0.2400
X 44 7800 440800 26613 18768 22440 19527F 46877 47400 0.3100 01800 0.1500 0.1300
Xz 379.7600 15.1800 14537 11546 1.0816 1.1196 126486 2.2800 0.2300 0.1300 0O.1100 0.0500
Xz 11.8100  42.2800 17020 1.180% 1.2270 1.2349 24546 3.6200 0.2700 0.1300 0.1100 0.0500
Xia 200.7300 5.4400 14898 12049 1.2550 1.2124 74677 1.0710 0.2200 0.1400 0.1200 0.1000
Xz 7.8800 17.5100 15022 1.3047 12016 12368 22991 1.9400 ©0.2400 0.1400 0.1200 0.0500
Xig 36.0400 5.2200 12735 1.3094 14209 1.3216 28327 1.2400 ©0.2200 0.1500 0.1200 0.1000
X7 469.5300 11.0600 12576 10532 10966 1.0373 1252204 1.3800 0.2100 01200 0.1100 O0.0BOO
Xig 8.4550 5.4400 12967 12474 1.2676 1.1479 24367 059300 0.2200 01400 0.1100 0.0%00
X 504700 150700 13845 12346 13246 12050 47422 19600 0.2100 0.1400 0.1200 0.1000
Xag 26.5900  15.8400 11484 10601 1.0250 1.0119 32257 05500 0.1%00 01300 0.1000 O0.0BOO

The study examined the effect of varying sample sizes on multicollinearity in logistic
regression with high dimensional data, using the first simulation setting. In Table 1, VIF
values and standard errors were presented for different sample sizes. Despite setting the
correlation between predictor variables to zero, multicollinearity was still present and
more severe in smaller sample sizes, especially those below 500. However, increasing the
sample size resulted in a decrease in the severity of multicollinearity. The standard errors
of predictor variables also increased with higher VIF values and were more prominent in
smaller sample sizes. Nonetheless, the standard errors decreased significantly as sample size
increased. Overall, the findings demonstrate that sample size can induce multicollinearity
in logistic regression with high dimensional data, indicating that multicollinearity is
particularly sensitive to changes in sample size.

+' KUMASI INSTITUTE OF

p - R W Page 128

UNIVERSITY




International Journal of Innovation and Development Special Edition (December 2023)

Table 2: Mean of the predicted parameter and the average of their square error for the
binary logistic model containing 20 variables, with varying sample sizes.

Estimated Parameter MSE

Sample Size
Coefficient 100 200 500 1000 1500 2000 100 200 500 1000 1500 2000

Ba(0.20) 1.41E+12 5.0198E+11 0.2220 0.2142 02016 0.2009 5.95E+26 1.48E+26 0.0414 0.0179 0.0109 0.0083
64(0.12) -9.131E+11 3.93E+11 0.1362 01256 01248 011235 7.10E+26 1.02E+26 0.0408 00177 00103 0.0087
62(0.40) 2 4BE+12 6.35477E+11 04526 04307 04147 04104 109E+27 1.77E+26 0.0440 00193 0.0107 0.0089
8s(0.30) 3.15E+12 -1.11853E+11 0.3246 0.3200 03021 0.3010 2.06E+27 6.29E+25 0.0485 00177 0.0108 0.0094
#4(0.03) 1.52E+12 -55254976768 0.0458 0.0377 00328 00296 2.54E+27 1.92E+25 0.0445 0.0152 0.0102 0.0085

8s(0.60) 2.B7E+12 1.14E+12 0.7014 05343 06179 06160 1.71E+27 4.86E+26 00673 00202 00125 0.0094
Ba(0.43) 1.64E+12 1.32E+12 04564 04634 04402 04401 7A47E+26 S546E+27 00406 00194 00115 0.0093
8:(0.40) 3.14E+12 B.25617E+11 04764 04244 04183 04075 1.67E+27 2.11E+26 0.057% 00222 00108 0.0083
Ba(2.10) 1.06E+13 3.40E+12 24068 22281 21820 21622 1.33E+2B 3.52E+27 0.2528 0.0628B 0.0340 0.0253
B4(0.72) 4.06E+12 1.62E+12 0.8201 07629 07506 07431 2.72E+27 B.B2E+26 0.0690 00229 0.0129 0.0108
B.c(4.30) 198E+13 7.94E+12 49158 45553 44658 44251 461E+28 1.76E+28 08362 02010 01085 0.0738
8::(1.80)  B.25E+12 3.B3E+12 21765 20152 15752 158593 B.O5E+2Y 3.94E+27 01551 00527 00294 0.0231
8:200.80) 3.51E+12 1.06E+12 0.6756 06305 06162 06159 1.B4E+27 3.43E+26 0.0560 00192 00122 0.0094
8:1(0.80) 3.04E+12 1.22E+12 0.9173 0.B458 0.B304 0.8217 1.79E+27 6.78E+26 0.0771 0.0228 0.0135 0.0092
6:4(0.70)  4.29E+12 1.24E+12 07556 07431 07285 07209 2.42E+27 5.12E+26 0.0876 00227 00143 0.0102
B:5(0.70)  4.20E+12 1.66E+12 0.BOY2 07378 07229 07211 2.52E+27 6.95E+26 0.0743 0.0221 00137 0.0096

8:(0.80) 4.43E+12 7.42065E+11 095027 0.B47% 0B292 08216 2.3%9E+27 1.75E+26 00672 00262 00127 0.0100
8:00.20)  7.7549E+11 1.73576E+11 02475 0.2122 02108 0.2099 7.01E+26 9.B3E+25 0.04%2 0.014% 0.011% 00082
B:a(0.80) 1.69E+12 B.72465E+11 06B45 06456 06232 06161 B.AVE+26 3.23E+26 0.0597 0.0225 00115 0.0090
B:.(0.50)  4.10E+12 1.31E+12 10342 05545 05286 05112 2.05E+27 469E+26 00722 00270 00148 00133
§20(0.11) 2.82E+12 1.41214E+11 01205 01162 01140 01121 2.23E+27 2.50E+25 0.0423 00178 00104 0.0077

Table 2 displays the estimated parameters and their associated Mean Squared Error (MSE),
including measurement bias. The findings indicate that larger sample sizes, particularly
500 or greater, result in estimated parameters that asymptotically approach their true
values on average. This discovery aligns with the conclusions drawn by Bujang et al. (2018),
who recommended utilizing a minimum sample size of 500. This sample size is crucial
for generating statistical values that accurately reflect the parameters within the targeted
population when using logistic regression. For variables with high VIF values, there is
significant variability between the estimated and true values, particularly for sample sizes
of 100 and 200. This demonstrates that sample size is a factor in accounting for biases in
model parameters when multicollinearity is present.

In an attempt to deal with the issue of multicollinearity between predictor variables in
the logistic regression model with a sample of size 100, principal component analysis
which projects the original data unto a subspace of uncorrelated principal components
was employed using the second simulated data where the correlation between predictor
variables was set at 0.8.
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Table 3: Total variance explained
PC  Eigenvalue Proportion of Variance % Cumulative Proportion %

PC1 15.3820 0.76590 0.7690
PC2 0.4886 0.0244 0.7934
PC3 0.3954 0.01599 0.8134
PC4 0.3868 0.0153 0.8327
PC5 0.3588 0.0179 0.8506
PCB 0.3340 0.0167 0.8673
PC7 0.3214 0.0161 0.8834
PC8 0.2724 0.0136 0.8970
PCS 0.2672 0.0134 0.9104
PC10 0.24380 0.0124 0.9228
PC11 0.2284 0.0114 0.9343
PC12 0.1989 0.0099 0.9442
PC13 0.1831 0.0092 0.9534
PC14 0.1772 0.0088 0.9622
PC15 0.1584 0.0079 0.9702
PCle 0.1513 0.0076 0.9778
PC17 0.1406 0.0070 0.9848
PC18 0.1183 0.0059 0.9907
PC19 0.0992 0.0049 0.9957
PC20 0.0870 0.0044 1.0000

Table 3 presents the principal components together with eigenvalues as well as their total
variance explained. The first PC with an eigenvalue of 15.382 has the largest variance
that accounts for about 76.9% of the total variation. However, the remaining 19 PCs have
eigenvalues less than 1 which indicates that each of the 19 PCs the PC explains less than a
single original variable. Asa rule of thumb, the first PC collectively accounts for about 76.9%
of the variability of the original data set losing only 23.1% of the information. Therefore,
only 1 PC is extracted from the twenty PCs without much information loss. This implies
that the original information was reduced from a 20-dimension data set which was high
into 1-dimensional data while at the same time maximizing the variability of the original
data set. The remaining PCs are considered insignificant hence, they are omitted from the
analysis.

Based on the screen plot in Figure 1, PC1 (76.9%) captures the most variation, whereas the
remaining PCs explain less variations in the original data.
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Figure 1: Scree plot for the 20 principal components

Table 4: Comparison of VIF values and standard errors of traditional logistic regression
model to principal component logistic regression.

LR With all Predictor variables LR with 1 PC

Variable Standard Error VIF PC Standard Error  VIF
X 1.44E+05 82.2200 PC1 0.5951 1.2055
Xz 1.74E+05 109.59100

Xz 1.44E+05 37.2300

Xa 2.14E+04 19.1800

Xs J7.23E+04 10.5700

Xs 3.02E+05 214.7900

X7 1.52E+05 84,6400

Xg 2.44E+04 12.9700

Xa 2.14E+04 15.6500

X0 1.42E4+05 37.0600

M 2.04E4+05 62.4600

Xas 1.45E+05 48.1200

X1s 7.29E+04 16.1400

Mia 9.70E+04 25.2100

Xis 1.56E+05 75.9200

Xis 6. 73E+04 17.2100

X 1.50E+05 67.4600

Xig 3.20E+04 47.2300

X1g 9.91E+04 16.0000

Xag 1.79E+05 74.1400
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Table 4 revealed that the traditional logistic regression model had very large standard
errors and VIF values for its predictors. In contrast, using principal component analysis
(PCA) to reduce the predictors to only one component that explains 76.9% of the variance
in the data resulted in a significantly lower VIF value of less than 2. This suggests that
when faced with high numbers of predictor variables and low sample sizes, PCA is a more
effective method for addressing multicollinearity in logistic regression than the traditional
method of regressing on all predictors.

5.0 CONCLUSION

The purpose of this study was to examine how sample size affects multicollinearity in
logistic regression analysis of high dimensional data. The study’s significance lies in its
ability to informresearchers about the impact of different sample sizes on the incidence of
multicollinearity andhow they can address it. The study successfully achieved its goals,
revealing that when the correlation between predictor variables is set to zero, standard
errors and VIF decrease with increasing sample sizes and increase with decreasing sample
sizes, indicating that sample size plays a crucial role in the problem of multicollinearity.

Drawing implications from the findings, it can be deduced that a minimum sample size
of 500 emerges as an optimal benchmark to circumvent multicollinearity challenges when
dealing with high-dimensional data in logistic regression analyses. Should the feasibility
of collecting such a sizable sample be constrained, the study suggests an alternative
approach: the utilization of principal component analysis (PCA). This technique can
effectively ameliorate multicollinearity by transforming original variables into orthogonal
components, thereby enhancing the statistical robustness of the analysis.

It is recommended that, forthcoming research endeavours should delve into the nuances
of applying PCA within scenarios characterized by limited data availability. Furthermore,
investigating the impact of diverse manifestations of multicollinearity on various modeling
techniques holds the promise of yielding nuanced insights into optimizing both sample
sizes and overall model performance. Additionally, exploring the generalizability of our
findings across diverse regression models and disparate fields of study will undoubtedly
contribute to a richer understanding of the intricate interplay between sample size and
multicollinearity.
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