
Special Edition (December 2023)International Journal of Innovation and Development 

Page   122

IMPACT OF SAMPLE SIZE ON 
MULTICOLLINEARITY WITH HIGH 

DIMENSIONAL DATA IN LOGISTIC REGRESSION 
ANALYSIS

Gerald Ohene Agyekum1*, Samuel Akwasi Adarkwa1, and Richard Yaw Kusi1 

1Department of Statistical Sciences, Kumasi Technical University.
*Corresponding author: Gerald Ohene Agyekum, geraldagyekum45@gmail.com

Abstract
In fields like epidemiology and biological sciences, logistic regression is essential for 
predicting or categorizing binary outcomes. However, multicollinearity, where predictor 
variables are highly correlated, can impact the model and lead to erroneous conclusions 
about each predictor’s effect. While maximum likelihood estimation is commonly used 
to obtain model parameters, it can be problematic with small sample sizes. There is 
little research on how sample size affects multicollinearity in high-dimensional binary 
logistic regression. To address this, researchers often suggest using methods like variable 
dropping          or principal component analysis. This study aimed to evaluate the feasibility of 
using PCA to manage multicollinearity in logistic regression with large column vectors 
and examine how sample size affects multicollinearity with samples of size 100, 200, 
500, 1000, 1500 and 2000. Results indicate that standard errors (SEs) and Variance 
Inflation Factors (VIFs) decrease with larger sample sizes and increase as sample sizes 
decrease, even with no correlation between predictors. Suggesting that sample size plays 
a crucial role in multicollinearity. The study recommends a sample size of at least 
500 to avoid issues with multicollinearity in logistic regression. If obtaining a sample of 
this size is not possible, using Principal Component Analysis (PCA) is a useful 
alternative.

Keywords: logistic regression, multicollinearity, high dimensional data, principal component 
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1.0 INTRODUCTION
In contrast to linear regression, which is utilized for forecasting continuous results, logistic 
regression aims to classify or forecast discrete or categorical outcomes, for instance, the 
possi- bility that a patient will succeed in cognitive rehabilitation (Maroof, 2012). This is 
particularly important in epidemiology and biological sciences, where it is necessary to 
predict or categorize a binary outcome or the likelihood of an event happening. Logistic 
regression is utilized to evaluate the probability of factors, such as high blood pressure, age, 
and cholesterol, influenc- ing the possibility of suffering from heart disease. However, the 
logistic regression model can sometimes be impacted by multicollinearity, which violates 
its underlying assumptions.
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A scenario known as multicollinearity occurs when there is a stronger correlation between 
two or more explanatory variables in the model (Aidoo et al., 2021). Multicollinearity, 
however, has the potential to bias or skew the estimated model parameter as well as increase 
the estimated standard errors related to the model parameter estimates (Lavery et al., 2019; 
Zahid & Ramzan, 2012; Sinan & Alkan, 2015). Multicollinearity allegedly undermines the 
statistical significance of independent variables, which makes it difficult to understand 
model parameters (Mackinnon & Puterman, 1989; Allen,  1997).  Multicollinearity does 
not influence the model’s goodness of fit, but it does lead to the incorrect conclusion when 
the goal is to forecast the effect of each predictor variable. This has an impact on how 
coefficients of predictor variables should be interpreted as a measure of how much the 
outcome variable will change with a unit change in the predictor while holding other 
variables constant. Due to the current limitation, the overlapping of variables can lead 
to an unrealistic contribution from each explanatory variable. The maximum likelihood 
estimation approach is typically used to obtain the parameters of the logistic model. 
When a large sample size is involved, the maximum likelihood estimators are known to 
be objective and consistent (Murphy, Rossini, & van der Vaart, 1997). Small samples are, 
however, frequently used in the medical sciences.
The effect of sample size on multicollinearity has been the subject of numerous studies, 
but little is known about binary logistic regression, particularly when dealing with high 
dimensional column vectors. Because of this, it might be difficult to determine at what 
sample size a researcher should be concerned about the problem of multicollinearity.
Numerous solutions to multicollinearity problems have been suggested by experts over 
the years (Aidoo et al., 2021). The drop variable approach, which entails deleting highly 
correlated variables from the model, is one of the most popular and basic methods for 
handling multicollinearity issues (Chen, 2012). Principal component analysis (PCA), 
which identifies orthogonal directions of maximum variance in the original data set and 
projects it onto a low dimensional subspace composed of the highest variance components 
without losing much information, is another method for dealing with the multicollinearity 
problem.

1.1 Study Objectives
The aim of the study is to investigate how sample size affects multicollinearity when 
performing logistic regression analysis. In addition, the study aims to ascertain the 
feasibility of PCA in handling multicollinearity problems in logistic regression and the 
extent to which the method can yield estimates with less variance Inflation Factor (VIF).

2.0 METHODS AND MATERIALS

2.1 The Logistic Regression Model
For the analysis of data with categorical dependent variables, the multivariate statistical 
tool known as logistic regression (LR) is frequently utilized. It is among the top resources 
for creating and applying binary linear models for classification.
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To use the logistic regression model on the data, certain assumptions must be made, as with 
any other method. Contrary to presuming a linear relationship between the predictor 
and outcome variables, logistic regression assumes a relationship between the logit of the 
independent and dependent values. Additionally,  the outcome variable needs to be 
categorical,  and its categories must be both mutually exclusive and exhaustive as well 
(Hosmer, Lemeshow, & Sturdivant, 1989).
Let x1, x2, x3, x4, ...xp Let us denote a collection of continuous predictor variables without any 
error. We will now consider n observations of these variables, which will be represented in 
the matrix format;  χ = (xij)n×p.

let Y = (y1, y2, y3, y4, ..., yn)
′ be a random sample outcome variable Υ associated with the 

observations in χ that is, yi ∈ {0, 1} i = 1, 2, 3, 4, ...n. Then the LR model is given by;
                             yi = πi + εi, i = 1, 2, 3, 4, ...p, (1)

Where:
yi is the outcome
εi is the error term
π represents the expected value of Y given X = x1, ..., xp, and it is expressed in the model as 
follows:

πi =  P {Y =  1|xi1, ..., xip}=                                                       (2)

Where: β0, β1, β2, β3, β4, ..., βp are the model parameters.

Since the above logistic model is non-linear, the logit transformation would be employed to 
make it linear. This is given by:

                                                (3)

 The linear summation can be obtained from the logit of p(x). The ratio of p(x) divided by 
1-p(x), whose log value yields the logit, expresses the likelihood that a COVID-19 patient 
would pass away, with x denoting the predictor variables.

2.2 Techniques for Detecting Multicollinearity

2.2.1 Tolerance
In order to identify the presence of multicollinearity, one may employ the utilization 
of tolerance, which measures the proportion of the variation in a specific independent 
variable that remains unaccounted for by the remaining independent variables. The specific 
explanatory variables which have a certain level of tolerance is given by:

  Tolerance = 1 − R2                      (4)
If the tolerance value approaches 1, it suggests minimal multicollinearity, whereas if it 
approaches 0, there is a greater chance of multicollinearity.
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2.2.2 VIF
The Variance Inflation Factor (VIF) is an indicator that reveals the degree by which 
multicollinearity inflates the estimated coefficient’s variance. A Variance Inflation Factor 
value which is ≥ 5 indicates the presence of multicollinearity (Shrestha, 2020). A VIF value 
is given by;

                                                (5)
Where; 

is the coefficient of determination for regressing the  predictor variable on the rest of 
the variables.

2.2.3 Correlation Coefficient
The Pearson correlation coefficient (also known as the “correlation coefficient”) is a most 
frequently employed indication of a linear relationship among two normally distributed 
variables. The Pearson coefficient is commonly calculated using a Least-Squares fit, with 
a value of 1 denoting a perfect positive link, a value of -1 denoting a perfect negative link, 
and a value of 0 indicating the lack of a relationship between variables. The usual rule is 
that multicollinearity exists when the correlation between variables exceeds 0.7 or 0.9.

2.3 Principal Component Analysis
There is always the danger of multicollinearity when dealing with high-dimensional data. 
Karl Pearson pioneered principal component analysis in the early 20th century, and Harold 
Hotelling expanded on it in 1933. It is a multivariate method used to describe the variability 
of a set of variables in terms of a smaller number of uncorrelated linear spans, such as 
variables with the highest variance, known as principal components.
PCA produces a feature subspace that maximises variation along the axes, we must 
first standardise the original data set (mean = 0, variance = 1). The main goal here is 
to convert the data set X of D dimensions into a new sample set Z of smaller dimension 
P (P < D), here Z is the PC of X.

The principal components can be obtained as follows:
1. Organize the data set. With X having a set of n vectors where Xi element 

is an instance of our data set.

2. Find the mean of variables using the equation;

                                                (6)

3. Calculate the variance;

                                                                                                                                            

4. Calculate the covariance;
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                            (7)
        

5. Calculate the eigenvalues and eigenvectors of the covariance matrix. Determine 
the eigenvalues and eigenvectors of the covariance matrix. The eigenvectors 
indicate the orientations of the new feature space, while the eigenvalues indicate 
their respective magnitudes.

Let us say A is a d × d matrix then a non-zero x in ℜd is the eigenvector of A. 
If Ax is also a scalar multiple of x that is: Ax = λx for some scalar λ. The scalar λ 
is termed as an eigenvalue of A and λ is corresponded by x. Since the eigenvector 
corresponding to the eigenvalue is non-zero of the matrix A, they satisfy the 
equation:

    (λI − A)x = 0   (8)

By using this definition, we can refer to the set E as encompassing all vectors x that fulfill 
the equation stated below, representing the associated eigen space.
    E{x : (A − λI)x} = 0 (9)

6. Once the eigen space is obtained from the covariance matrix, the next step is to 
order the eigenvectors with regard to their eigenvalues from highest to lowest 
(λ1 ≥ λ2 ≥ λ3 ≥ λ4, ..., ≥ λn). The proportion of total variation accounted for 
by the ith PC is given by:

                                                           (10)

by doing so, we eliminate components that are less significant and retain PCs that 
provide good approximations of the original data.

2.4 Statistical Software
The R software version R.4.1.3 was used for fitting the LR models at 0.05 significance 
level and simulation of data.

3.0 Simulation Setting
In the simulation, 1000 samples (replications) of sizes n= 100, 200, 500, 1000, 1500, and 
2000 were generated based on model (2) with 20 covariates. In order to study the effect of 
sample size on multicollinearity, two different logit models were created during the data 
generation stage. These two models were simulated in two different ways as:

3.1 Version 1
1. Generate 20 independent normal predictor variables X1, X2, X3, X4, X5, X6, X7, 

X8, X9, X10,......, X20 from a multivariate normal distribution with mean vector 
µ′ = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0,............, 0) and covariance matrix:
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2. Use the information in 1 to generate an outcome variable y using the logit 
function:

                       (11)

with model parameters 

3. Generate the observed response variable y such that:

                                                     (12)

4. Fit a binary logistic model y ∼ 0.2 + 0.12X1 + 0.4X2 + 0.3X3 + 0.03X4 + 
0.6X5 + 0.43X6 + 0.4X7 + 2.1X8 + 0.72X9 + 4.3X10 + 1.9X11 + 0.6X12 + 
0.8X13 + 0.7X14 + 0.7X15 + 0.8X16 +0.2X17 + 0.6X18 + 0.9X19 + 0.11X20

5. Perform the steps numbered 1 to 4 in a repetitive manner, iterating 1000 
times for various samples, and determine the suitable parameters through 
computation.

3.2 Version 2
1. To address the issue of high multicollinearity in a large data set X containing 

100 observations and 20 variables, principal component analysis was utilized. 
The data was sourced from a multivariate normal distribution with a mean of 
zero and a variance of one for comparative analysis.

2. High correlation is fixed at 0.80 to induce problem with multicollinearity 
deliberately.

3. All other procedures remain the same as outlined in the first simulation setting.

4.0 Results and Discussion
Table 1: VIF and standard errors for binary logistic model variables with 20 predictor 
variables.
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The study examined the effect of varying sample sizes on multicollinearity in logistic 
regression with high dimensional data, using the first simulation setting. In Table 1, VIF 
values and standard errors were presented for different sample sizes. Despite setting the 
correlation between predictor variables to zero, multicollinearity was still present and 
more severe in smaller sample sizes, especially those below 500. However, increasing the 
sample size resulted in a decrease in the severity of multicollinearity. The standard errors 
of predictor variables also increased with higher VIF values and were more prominent in 
smaller sample sizes. Nonetheless, the standard errors decreased significantly as sample size 
increased. Overall, the findings demonstrate that sample size can induce multicollinearity 
in logistic regression with high dimensional data, indicating that multicollinearity is 
particularly sensitive to changes in sample size.
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Table 2: Mean of the predicted parameter and the average of their square error for the 
binary  logistic model containing 20 variables, with varying sample sizes.

Table 2 displays the estimated parameters and their associated Mean Squared Error (MSE), 
including measurement bias. The findings indicate that larger sample sizes, particularly 
500 or greater, result in estimated parameters that asymptotically approach their true 
values on average. This discovery aligns with the conclusions drawn by Bujang et al. (2018), 
who recommended utilizing a minimum sample size of 500. This sample size is crucial 
for generating statistical values that accurately reflect the parameters within the targeted 
population when using logistic regression. For variables with high VIF values, there is 
significant variability between the estimated and true values, particularly for sample sizes 
of 100 and 200. This demonstrates that sample size is a factor in accounting for biases in 
model parameters when multicollinearity  is present. 
In an attempt to deal with the issue of multicollinearity between predictor variables in 
the logistic regression model with a sample of size 100, principal component analysis 
which projects the original data unto a subspace of uncorrelated principal components 
was employed using the second simulated data where the correlation between predictor 
variables was set at 0.8.
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Table 3: Total variance explained 

Table 3 presents the principal components together with eigenvalues as well as their total 
variance explained. The first PC with an eigenvalue of 15.382 has the largest variance 
that accounts for about 76.9% of the total variation. However, the remaining 19 PCs have 
eigenvalues less than 1 which indicates that each of the 19 PCs the PC explains less than a 
single original variable. As a rule of thumb, the first PC collectively accounts for about 76.9% 
of the variability of the original data set losing only 23.1% of the information. Therefore, 
only 1 PC is extracted from the twenty PCs without much information loss. This implies 
that the original information was reduced from a 20-dimension data set which was high 
into 1-dimensional data while at the same time maximizing the variability of the original 
data set. The remaining PCs are considered insignificant hence, they are omitted from the 
analysis.
Based on the screen plot in Figure 1, PC1 (76.9%) captures the most variation, whereas the 
remaining PCs explain less variations in the original data.
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Figure 1: Scree plot for the 20 principal components

Table 4: Comparison of VIF values and standard errors of traditional logistic regression 
model  to principal component logistic regression. 
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Table 4 revealed that the traditional logistic regression model had very large standard 
errors and VIF values for its predictors. In contrast, using principal component analysis 
(PCA) to reduce the predictors to only one component that explains 76.9% of the variance 
in the data resulted in a significantly lower VIF value of less than 2. This suggests that 
when faced with high numbers of predictor variables and low sample sizes, PCA is a more 
effective method for addressing multicollinearity in logistic regression than the traditional 
method of regressing on all predictors.

5.0 CONCLUSION
The purpose of this study was to examine how sample size affects multicollinearity in 
logistic regression analysis of high dimensional data. The study’s significance lies in its 
ability to inform researchers about the impact of different sample sizes on the incidence of 
multicollinearity and how they can address it. The study successfully achieved its goals, 
revealing that when the correlation between predictor variables is set to zero, standard 
errors and VIF decrease with increasing sample sizes and increase with decreasing sample 
sizes, indicating that sample size plays a crucial role in the problem of multicollinearity. 
Drawing implications from the findings, it can be deduced that a minimum sample size 
of 500 emerges as an optimal benchmark to circumvent multicollinearity challenges when 
dealing with high-dimensional data in logistic regression analyses. Should the feasibility 
of collecting such a sizable sample be constrained, the study suggests an alternative 
approach: the utilization of principal component analysis (PCA). This technique can 
effectively ameliorate multicollinearity by transforming original variables into orthogonal 
components, thereby enhancing the statistical robustness of the analysis.
It is recommended that, forthcoming research endeavours should delve into the nuances 
of applying PCA within scenarios characterized by limited data availability. Furthermore, 
investigating the impact of diverse manifestations of multicollinearity on various modeling 
techniques holds the promise of yielding nuanced insights into optimizing both sample 
sizes and overall model performance. Additionally, exploring the generalizability of our 
findings across diverse regression models and disparate fields of study will undoubtedly 
contribute to a richer understanding of the intricate interplay between sample size and 
multicollinearity.
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