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Abstract
This paper aims to model and forecast daily prices and returns of Bitcoin using the Box-
Jenkins technique. The study used daily Bitcoin prices and returns from 19th June 2020 to 
22nd January 2022 comprising 572 observations. The results indicated that the best models 
for predicting the daily prices and returns of Bitcoin, respectively, were ARIMA (0, 1, 0) and 
ARIMA (0, 0, 0), according to Akaike’s Information Criterion (AIC). Based on the study’s 
findings, investors are advised to avoid the temptation of over reliance on asset prices and 
returns forecasts in financial markets, especially the Bitcoin market.
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1.0 INTRODUCTION
Cryptocurrencies are digital money that is processed anonymously over a decentralised 
network, Tarasova et al., (2020). The cryptocurrency was first introduced to the world’s 
financial markets about a decade ago. They act outside centralised financial institutions by 
finding additional money and investment options.  Over 2000 cryptocurrencies are in use, 
with most of them being traded anonymously via blockchain technology. The most widely 
used cryptocurrencies are Bitcoin, USD coin, Dogecoin, Chainlink, XRP, Tether, Cardano, 
Polkadot, and Stellar. However, the first cryptocurrency, Bitcoin, which accounts for most 
market capitalisation was the subject of this research.
Forecasting plays a vital significant role in finance, education, health, agriculture 
and marketing. Several of these forecasts employ the statistical model known as the 
Autoregressive Integrated Moving Average (ARIMA), which is widely used to forecast 
stationary datasets. For example, the significant volatility in pricing is the key challenge 
researchers face in predicting the price of cryptocurrencies. Using the ARIMA model, the 
researchers addressed this issue by rendering the datasets stationary over many time series 
dimensions.
The price of Bitcoin (BTC) has been discussed by many academics despite its rapid 
fluctuations. According to Adcock and Gradojevic (2019) and (Chen, 2020), technical 
indications can be used to anticipate BTC prices. Other recent studies have employed 
machine learning-related techniques for daily price forecasting and price increase/decrease 
forecasting (Mallqui, 2019). According to Adcock and Gradojevic (2019), accuracy can 
reach 63 percent. Mallqui (2019) discovered that daily price forecasts had a 98 percent 
success rate.
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To develop financial plans, finance specialists utilise projections. They also employ them 
to communicate their revenue projections. Investors put their money into stocks/securities 
to make a profit. As a result, financial professionals and investors benefit from having a 
strong understanding of future share price movement. They can increase their confidence 
by knowing what the future holds by consulting and investing. Financial professionals and 
investors will undoubtedly be interested in forecasting methodologies that will accurately 
predict future share price movements with the smallest possible error margin. The Box-
Jenkins method, the Black-Scholes model, and the binomial model are just a few forecasting 
strategies that can be used to forecast changes in stock values. In this study, however, 
bitcoin prices and returns predictions were made using the Box-Jenkins approach.
This research employed the ARIMA model to predict the price and returns of bitcoin. 
Accordingly, the study seeks to address three specific objectives: to determine which 
moving average (q) and autoregressive (p) parameters best match the Bitcoin price and 
return series, to identify the best differencing order (d) that makes the time series stationary 
and to use the ARIMA model to predict Bitcoin prices and returns for a period of 365 days. 
Again, this study's findings will assist financial portfolio managers, investors, and other 
shareholders in making better decisions about cryptocurrency investments. This will also 
instill greater trust in financial sector investors, allowing them to embark on more risky 
transactions. Furthermore, the study will be beneficial to investors, shareholders, directors, 
regulators, other investment businesses, and university academics.
According to Nakamoto (2008), many academic papers have been published on Bitcoin 
since its inception in 2008. Traditional econometric approaches were used by some authors 
to examine the future prospect of bitcoin and its influence on additional economic factors 
using conventional economic techniques. In terms of hedging capabilities and exchange 
benefits, the GARCH (Generalized Autoregressive Conditional Heteroskedasticity) model 
revealed significant parallels between gold and the US dollar.
Dyhrberg (2015) revealed that bitcoin has apparent advantages for risk-averse investors 
because it sits in the middle between gold and US currency in terms of financial markets 
and project management. A cointegration analysis was employed by various authors to 
look into the impact of specific variables on bitcoin’s price. In this regard, Ciaian et al., 
(2015) used Barro’s gold standard model to discover that the Dow Jones index, currency 
rate, and oil price only significantly influenced global macro-financial growth in the short 
run. Over time, these factors rarely have an impact on bitcoin’s price.
Zhu et al., (2017) discovered that using the VEC (Vector Error Correction) model, it was 
found that the Consumer Price Index, the Dow Jones Industrial Average, and the Federal 
Funds Rate had a long-term negative impact on the price of bitcoin.
Namin et al., (2018) revealed that the results for rolling ARIMA and LSTM from the 
financial time series were 511.481 and 64.213, respectively. The results were computed 
using the average Rooted Mean Squared Error (RMSE). The error rate was reduced by 
87.445 percent. Both models had RMSE values of 5.999 and 0.936, respectively. With the 
RMSE data, it is clear that LSTM outperforms ARIMA by a large margin.
This is strong evidence that the LSTM is considerably superior at forecasting time series, 
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particularly Bitcoin price projections, which are more difficult to anticipate due to high 
volatility (NAMIN, 2018). According to Mallqui (2019), the behaviour of Bitcoin is 
constantly unpredictable, and price prediction has a vital role because money may quickly 
lose value depending on this price forecast.
Mallqui (2019) employs the GARCH model to estimate prices for the Ethereum, Bitcoin, 
and Dash markets because the price of Bitcoin is highly correlated with the number of 
transactions and the average value of each transaction.
The error reduction rates of ARIMA and LSTM were recommended by Ensemble A 
findings. The error reduction rate was estimated to be between 50.05 and 52.78 percent, 
LSTM won by a sliver of a point, demonstrating its supremacy in ARIMA. 
Some writers have compared machine-learning approaches to classical models to estimate 
bitcoin values. In terms of accuracy and RMSE, McNally (2018) found that neural non-
linear network models (RNN and LSTM) outperformed conventional ARIMA model 
forecasting. Additionally, the LSTM slightly outperformed the RNN, but the difference 
was not significant because the LSTM had greater accuracy (53%) and a slightly larger 
RMSE (7%) than the RNN. However, due to the various activation functions and equations 
that must be resolved, the LSTM requires 3.1 times more to train with the same network 
settings. Nevertheless, a number of academics used machine-learning optimization to 
examine the impact of a variety of new features on bitcoin pricing. 
Huisu et al., (2018) developed a rolling window LSTM model to predict the price of bitcoin 
using macroeconomic, global currency ratio, and blockchain data as inputs. According 
to Yamak et al., (2019), the LSTM model with rolling window settings outperforms the 
traditional LSTM and neural network models using MAPE and RMSE. Other authors 
have quantified the impact of different indicators on bitcoin pricing, such as tweets about 
bitcoin or web search media results, using machine learning optimization.
In order to predict if the price of bitcoin would change in the near future, Stenqvist and 
Lonno (2017) looked through 2.27 million tweets about cryptocurrency. Based on the 
intensity of sentiment swings from one period to the next, the estimated model states 
that compiling tweet sentiments over a 30-minute period with four shifts forward and a 
sentiment-limited fluctuation of 2.2 percent would result in an accuracy estimate of 83 
percent. The author suggests using machine learning to look at the correlation between 
Bitcoin and Twitter data further. Matta et al., (2015) indicated that the quantity of tweets 
and/or search engine results was compared to the price of bitcoin.
There have been various studies on bitcoin price predictions that make use of machine 
learning (LSTM), GARCH, and other sophisticated statistical methods. To forecast bitcoin 
prices and returns, the researcher is investigating the feasibility of using the traditional 
time series forecasting method, ARIMA. It should be emphasised that earlier studies failed 
to consider the significance of forecasting bitcoin prices and returns using the same model 
and then assessing the model that was employed to forecast the same cryptocurrency. This 
study took into account Bitcoin prices and returns in order to anticipate potential Bitcoin 
prices and returns. To each, an ARIMA model was applied, and the dataset was trained 
using daily time series. 



Special Edition (December 2023)International Journal of Innovation and Development 

Page   65

2.0 Materials and Methods 

2.1 Source of Data
The research employed daily price and returns of Bitcoin from 19th June, 2020 to 22nd 
January, 2022 for a period of 2 years. Information on the daily prices and returns of bitcoin 
for the underlying period of the study was obtained from Bloomberg and was used for this 
research. This dataset consists of 572 observations for the study.

2.2 Time Series Models 
In order to anticipate how a factor would affect the predicted variable, a time series model 
(ARIMA) uses the predicted previous behavior of the variables  to generate predictions 
about its future behavior. According to Howrey (1980), time series models are based on an 
unstable nonparametric formulation. He concentrated more on data analysis to simplify 
the model. In time series data, numerous patterns or trends can be noticed. 
However, due to the volatility of the cryptocurrency and the numerous extrinsic factors 
that affect its price, it can be extremely difficult to model Bitcoin prices and returns. In this 
situation, a number of factors may influence the application of ARIMA against alternative 
cutting-edge techniques: the GARCH model primarily handles the clustering of volatility 
in financial returns. In order to capture historical patterns in bitcoin return patterns, the 
researcher used the ARIMA model. Again, the ARIMA was reasonably utilized because of 
the time frame for the data, even though sophisticated techniques like LSTM require a huge 
amount of data for training to prevent overfitting. Additionally, ARIMA was employed 
because, unlike more complex methods like machine learning, GARCH, it is superior at 
stabilizing non-stationary data and allowing for straightforward result interpretation.

2.2.1 The Random Walk Model 
The general equation for random walk model is given as follows:
Yt = Yt-1 + et                                t € Z,
where “et” is also the white noise or error term and is normally distributed. Yt is the random 
walk and Yt-1 is the immediate past value of a time series determines its future value in the 
simplest random walk process.

2.2.2 Autoregressive Model, AR(p)
An autoregressive model combines one or more previous values to describe the current 
value of a time series. It shows how one value is related to its immediate preceding values. 
The order term, p, in an autoregressive model indicates how many previous values should 
be used in the difference equation to obtain the present value.
The general equation of autoregression (p) is written as follows:
Zt = φ1zt-1 + φ2zt-2 + …………………... + φpzt-p + εt    t > P                         (1)
Where
Zt: response variable at time t
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zt-1, zt-2 …………………… zt-p: response variable at time t lags
φi: coefficient to be estimated as; i = 1,2, 3…... p   -1 < φp <1
εi: random error with mean zero and constant variance i.e. εi ≈ N (0, σi

2)

2.2.3 Moving Averages MA (q)
Random shocks in a noisy environment affect a time series. As a result, the random shocks 
that existed in past values have an impact on the present value of the series. The effect of 
earlier random shocks on future values is captured using moving average terms.
The MA(q) process is given by; 
Zt = εt + θ1εt-1 + θ2εt-2 …………… + θqεt-q                                                                          (2)
Zt: response variable at time t
εi : random error with mean zero and constant variance i.e. εi ≈ N(0, σi

2)
εt-1, εt-2 ……………. εt-q: errors in previous time periods that are incorporated in the response Zt

2.2.4 Mixed Models/ARMA (p q)
The AR/MA model is used to generate the Autoregressive Moving Average model. 
Any stationary process may be approximated with any degree of precision using an 
autoregressive model or a moving average.
Zt = φ1zt-1 + φ2zt-2 + ……… + φpzt-p + εt + θ1εt-1 + θ2εt-2 + …………… + θqεt-q            (3)

2. 2. 5 ARIMA (pdq)
The mixed models (ARMA) model presupposes the stationarity of time series data (i.e., their 
statistical qualities do not vary over time). However, actual data is not always stationary. 
The differencing method makes time series data stationary. 
The equation for the first order difference of Zt is given as Zt = Zt – Zt-1.                         (4)
The Integrated Autoregressive Moving Average (ARIMA) model uses an ARMA time 
series that has been rendered stationary by a differencing technique. 
The ARIMA model breaks down historical data into three processes: an autoregressive 
(AR) process that records past events, an integrated (I) process that makes data stationary 
for forecasting, and a moving average (MA) process that calculates prediction error. 
ARIMA (p, d, q)’s general equation is given by;
Zt = φ1Zt-1 + φ2Zt-2 +….. + φpzt-p + ….+ dZt-p-d + … + θqεt-q + εt                                        (5)       

Furthermore, the Akaike Information Criterion (AIC) and Bayesian Information Criterion 
(BIC) methods was used to determine if an ARIMA (p, d, q) model was a good statistical 
fit for data.

2.3 Functions of Autocorrelation and Partial Autocorrelation
The ACF is taken into consideration when the linear dependence between yt and its previous 
values, yt-1, is of importance. The coefficient of sample autocorrelation between yt and yt-1 is 
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denoted by rk, which is a function of k only under the weak condition of stationarity.

rk =                                                                                                     (6)

Again, the PACF, which is a function of the ACF, assesses the degree of correlation between 
a variable and a lag of itself that is not accounted for by correlations at any lower-order lags, 
taking the AR model into account.

2.4 Box-Jenkins Methodology
A series of steps known as the Box-Jenkins technique can be used with time series data to 
choose, fit, and validate ARIMA models.
Model Identification 
Estimation and testing
Diagnostic check
Forecasting

2.4.1 Model Identification 
The process of model identification entails evaluating the statistical fit of a given model 
with certain p, d, and q parameters. Unit root tests such as the ADF and KPSS tests, sample 
partial autocorrelation function (PACF) and sample autocorrelation function (ACF) tests 
were used in this research to determine the d parameter. The next step is to discover a 
suitable ARMA form to represent the stationary series once the proper order of differencing 
necessary to make the bitcoin price and return series stationary has been established. The 
p autoregressive and q lagged error parameters with the best fit to the bitcoin price and 
returns data were determined using the ACF, PACF, and the consequent correlograms as 
well as objective penalty function statistics. Alternative objective methods for identifying 
ARMA models were essential because of the very subjective nature of the methodologies of 
ACF and PACF. Akaike Information Criterion (AIC), and Bayesian Information Criterion 
are the penalty function statistics used in this research.

2.4.2 Estimation and testing
Model estimation means finding the most accurate estimations for the specified model’s 
parameters. The forecast model for this study is estimated as follows: 
ΔZt = c + φ1Δzt-1 +……… + φpΔzt-p +……….+ θ1εt-1 + …………… + θqεt-q                 (7)

2.4.3 Diagnostic check
Diagnostic checking involves validating the predicted model’s reasonable fit to the data. 
The residuals produced from the estimated model were checked for autocorrelation using 
the ACF, PACF, and Ljung-Box Q statistics in this research to make sure the model is a 
reasonable fit to the bitcoin data. If the residuals show any evidence of autocorrelation, a 
different model should be used. Equally, if the residuals are white noise, it indicates a good 
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fit. Another crucial check will be to estimate the chosen model over a range of time periods 
and see how robust it is. If the parameter estimates remain constant throughout time, the 
fit is satisfactory. Otherwise, extra thought will be needed. Finally, the model created was 
used to predict the price of bitcoin for 365 days in advance.

2.5 Validation Matrices
Validation measures evaluate the effectiveness of time series models in predicting and 
identifying reliable models. When utilizing ARIMA or other forecasting techniques, 
choosing the most pertinent statistic for particular applications or business goals is 
essential. With regard to this, the researcher considered the following error matrices.

RMSE =

MAPE =  

MSE =

2.6 Assumptions and limitations for using the ARIMA Model 
For the ARIMA model to accurately predict bitcoin prices and returns, the researcher must 
acknowledge some assumptions and built-in limitations, as follows: the model assumed 
that the statistical characteristics would not change over time and that there should be a 
linear relationship between the variables. Notwithstanding this, bitcoin price dynamics, 
being influenced by a multitude of factors, might not always exhibit linearity.
One key limitation was that the model disregarded external factors. Because ARIMA 
models are univariate, they can only forecast future values of the series itself based on past 
values. Yet a number of external factors, like the state of the global economy, adjustments 
to the law, or technological advancements, can have an impact on the price and returns of 
Bitcoin. These factors were not captured in the model.

3.0 RESULTS

3.1 Test for Stationarity
To fit the model of the data, the stationarity of the variable was first tested. The stationarity 
was checked by plotting the data, after which the ADF and KPSS tests were further used to 
test whether the data is stationary.
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Figure 1: Plot of Bitcoin Prices showing Stationarity

The figures above show that there are irregular (residuals) variations in the Bitcoin prices. 
Again, it was observed from the ACF and PACF plot that there is high autocorrelation in 
the Bitcoin prices. This is an indication that the data for Bitcoin prices is non-stationary. 
The high autocorrelation of the bitcoin price is indicating a strong link between recent 
and historical values. This knowledge is essential for traders, analysts, investors and 
econometricians to choose the best models to predict future prices in the volatile 
cryptocurrency market.
Table 1: ADF test for Bitcoin Prices

TEST TEST STATSITC P-VALUE
ADF -1.3555 0.8511

From Table 1 it can be deduced that the p-value (0.8511) exceeds the conventional 
significance level of 0.05 indicating that the null hypothesis cannot be rejected. It is 
therefore concluded that there is no stationarity in the data. The non-stationarity shows 
the tendency of Bitcoin prices to shift over time in terms of its statistical features like mean 
and variance. Due to the possibility that historical trends no longer hold true, forecasting 
future prices becomes more difficult, and this may be a reflection of external variables 
like changes in legislation, technological improvements, political affairs, or alterations in 
how people view cryptocurrencies. It could be beneficial to investors if they monitor the 
movement before they make any investment decision. 
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Table 2: KPSS stationarity test results for Bitcoin Prices

TEST TEST STATISTIC P-VALUE
KPSS 2.0381 0.01

The results of the KPSS test have a p-value of 0.01 and are less than the traditional significant 
level of 0.05, rejecting the null hypothesis in support of the alternative hypothesis and 
indicating that there is no trend stationarity in the price of bitcoin. This finding confirms 
that of ADF test which implies that the actual data for Bitcoin price is not stationary and it 
can be very challenging to forecast the future price.
Table 3: Model Selection Criteria for Bitcoin Prices

AIC AICc BIC
ARIMA (2,1,2) 12852.18 12852.3 12879.7
ARIMA (0,1,0) 12846.28 12846.3 12855.45
ARIMA (1,1,0) 12849.26 12849.29 12863.01
ARIMA (0,1,1) 12848.26 12848.29 12862.01
ARIMA (0,1,0) 12844.31 12844.32 12848.9
ARIMA (0,1,0) 12859.21 12859.22 12863.8

The estimated results from Table 3 showed that ARIMA (0,1,0) model with zero mean is 
selected as the best model because it has lowest AIC and BIC values. The findings indicate 
that the ARIMA (0, 1, 0) model with a zero mean best captures the characteristics of the 
cryptocurrency market over the  period under study. It says the market does not rely heavily 
on historical data and that the best forecast for price movement tomorrow is typically zero. 
However, the dynamic nature of cryptocurrency markets necessitates routine re-evaluation 
of the fit of models and frameworks.
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Figure 2: ACF and PACF Residual for Bitcoin Prices

Table 4: Box-Ljung test for Residual Correlation for Bitcoin Prices

Test Chi-Square test Df P-value
Box-Ljung test 9.2308 10 0.5104
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It is observed from Table 4 that the Chi-Square value of 9.2308 and the p-value of 0.5104 
are both greater than standard significant level of 0.05. In line with this, we do not have 
enough evidence to reject the null hypothesis indicating that the residuals for the observed 
values are independently distributed.

Forecasts from ARIMA(0,1,0)

2020.0 2021.0 2022.0

-40
000

0
400

00
800

00

Figure 3: The Daily Bitcoin Price forecast

From the figure above, we can observe that the forecast of the original Bitcoin price shows 
a constant fluctuation in the upcoming days.
Table 5: Accuracy of forecasting the daily Bitcoin Price 

Model ARIMA (0,1,0)
ME -11.76083
RMSE 1715.42
MAE 892.0642
MPE -0.17383
MAPE 2.86705
MASE 0.02592
ACF1 -0.00570

 Table 5, shows the forecast accuracy for the original daily price of Bitcoin time series 
using ARIMA (0, 1, 0). From the results, the different error measurement shows that the 
forecast accuracy of our model is accepted. This is due to the fact that the MASE value is 
less than 1, and it implies that ARIMA (0,1,0) performs better than a naïve model in this 
case study. Again, with an MAPE of 2.86705%, the predictions of the model are generally 
accurate. Particularly for volatile cryptocurrencies, a MAPE < 10% is regarded favourably. 
Also, the projections of the model for Bitcoin's price have an average error of 3.43%, or a 
difference of  $1715.42. This estimate was made since the price range at the time the study 
was conducted was around $50,000.00.
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The figure above shows that there is a constant mean in the returns. This signifies that the 
return for Bitcoin is stationary over the time.
Table 6: KPSS test for Stationarity for Bitcoin Returns

TEST TEST STATISTIC P-VALUE
KPSS 0.2453 0.1

The results of the KPSS test have a p-value of 0.1, which is higher than the traditional 
significant level of 0.05, which means the null hypothesis cannot be rejected, indicating 
that there is trend stationarity in the returns of bitcoin.
Table 7: Box-Ljung test for Residual Correlation for Bitcoin Returns

Test Chi-Square test Df P-value
Box-Ljung test 11.5 10 0.3199

The findings from Table 7 indicated that the Chi-Square value of 11.5 and the p-value of 
0.3199 are both greater than significant level of 0.05. This implies that there is no enough 
basis to reject the null hypothesis indicating that the residuals for the observed values are 
independently distributed.
Table 8: Model Selection Criteria for Bitcoin Returns

AIC AICc BIC
ARIMA (2,0,2) 4012.925 4013.402 4040.434
ARIMA (0,0,0) 3909.601 3909.618 3918.771
ARIMA (1,0,0) 3912.751 3912.784 3926.505
ARIMA (0,0,1) 4008.149 4008.182 4021.903
ARIMA (0,0,0) 3911.785 3911.79 3916.37

The output from Table 8 indicates that ARIMA (0,0,0) with zero mean is selected as a 
best model because it has least AIC and BIC values. The ARIMA(0,0,0) model suggests 
that Bitcoin's returns during the study period exhibited random behaviour, making it 
challenging to predict future returns using only historical data as the market behaves like 
white noise.
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Table 9: Accuracy for forecasting daily Bitcoin Returns 

Error Matrices Bitcoin Returns
ME 0.27333
RMSE 3.60091
MAE 2.49341
MPE -14.3370
MAPE 462.8137
MASE 0.65259
ACF1 -0.03420

Table 9, shows the forecast accuracy for the original daily returns of Bitcoin time series 
using ARIMA (0,0,0). From the results, the different error measurement shows that the 
forecast accuracy of our model is accepted. This is due to the MASE value (0.6526) which 
is less than 1, and it implies that ARIMA (0, 0,0) performs better than a naïve model in 
this case study.

4.0 DISCUSSION
The first approach to Box-Jerkins technique is to determine if the order of differencing 
is important to make the data stationary for forecasting. It was observed from  Figure 1 
that ACF are all statistically significant since all the spikes are outside the 95% confidence 
bounds. The non-stationarity of the data showed that the prices of Bitcoin are unstable. 
This finding supports that of Mallqui (2019), who attested to the fact that the behaviour 
of Bitcoin is constantly unpredictable, and price prediction has a vital role because money 
may quickly lose value depending on this price forecast.
Again, after the first differencing, both ACF and PACF were found to be statistically 
significant which means that first difference is enough to render the dataset stationary. In 
line with this ARIMA (0,1,0) was recommended as the best model to forecast the future 
prices of bitcoin. This finding is in agreement with Stenqvist and  Lonno (2017), who 
searched through 2.27 million tweets on bitcoin to see if they could predict a change in the 
cryptocurrency price in the coming days. Based on the intensity of sentiment swings from 
one period to the next, the anticipated model indicates that aggregating tweet sentiments 
over a 30-minute period with four shifts forward and a sentiment-limited fluctuation of 
2.2 percent will result in an 83 percent accuracy estimate. NAMIN (2018) indicated that 
the LSTM is considerably superior at forecasting time series, particularly Bitcoin price 
projections than ARIMA due to high volatility. Finally, this study also predicted the daily 
returns of Bitcoin and realized that ARIMA (0,0,0) was the best model to forecast since 
the actual data was stationary. This implies that the data for returns of Bitcoin under 
the period of study is white noise (random shock). Again, the forecasts of the price of 
bitcoin would provide essential information to traders, investors, decision-makers, and the 
cryptocurrency industry. They support risk management, return maximization, and well-
informed investment choices. These estimates would also guide investors on how to select 
viable businesses in the cryptocurrency market.
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However, the linear forecasting technique ARIMA will not adequately capture the 
nonlinear patterns in Bitcoin price changes or the presence of any seasonality. In order to 
address these challenges, the researchers recommended more advanced techniques such as 
GARCH models, neural networks, Prophet, ARIMA with Exogenous Variables (ARIMAX), 
etc. for future research. These models take into consideration seasonal impacts, nonlinear 
patterns, and fluctuating variances.
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